Abstract

Tensions generated in selected bands of the four major ligaments of the flexed knee (40-90 degrees) have been measured in vitro when the tibia is subjected to passive anterior translation and axial rotation with and without a compressive preload. The measurements were made in 30 fresh-frozen specimens using the buckle transducer attached to the anteromedial band of the anterior cruciate ligament [ACL (am)], the posterior fibres of the posterior cruciate ligament [PCL (pf)], the superficial fibres of the medial collateral ligament [MCL (sf)], and in the total lateral collateral ligament (LCL). Particular attention was placed on the evaluation of the performance of the transducer specific to such measurements in order to minimize the errors associated with the use of this transducer. The results indicate that, among the measured ligaments, substantial tension (greater than 20 N) is generated only in the ACL (am) in tibial anterior translation up to 5 mm. The tension pattern generated in response to tibial axial rotation, however, is complex and exhibits considerable variation between specimens. In general, both the MCL (sf) and LCL are tensed at all tested flexion angles, with the tension in external rotation being significantly greater than in internal rotation. At 40 degrees of flexion, the ACL (am) bears tension mainly in internal rotation, while at 90 degrees of flexion the PCL (pf) is tensed in both senses of rotation. The response of the LCL shows marked variation among specimens; very small tension (less than 15 N) is generated in internal rotation in 48% of the specimens, and in either sense of rotation in 20% of the specimens. The tension in the ACL (am) in internal rotation is invariably greater in those specimens in which LCL tension is negligible. This correlation between increased ACL (am) function and inadequate LCL restraint appears significant in terms of ACL injury and repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.