Abstract

Osteoconduction and osseointegration are the critical stages for implantation success. Peptides containing RGD (Arg-Gly-Asp) adhesive sequence are known to promote cell adhesion and consequently to favor osseointegration of medical devices. In this study, RGD peptides were coupled to a bisphosphonate used as an anchor system and chemically adsorbed on polished titanium discs. Two different concentrations, 10(-10) mol/L (RGD 10(-10)) and 10(-4) mol/L (RGD 10(-4)) were compared to non coated discs (RGD 0). Adhesion, spreading, and mineralization of osteoblast-like cells (Saos-2) were assessed. Mineralization kinetic was done at 3, 6, 10, 14, and 18 days of culture; the extent of mineral deposits was quantified by image analysis. Histogram repartitions of nuclear area, characterizing cell spreading, showed a shift to higher values in cells cultured on RGD coated titanium disks. Mineralization started at day 3 in the three groups, but had a faster development in the RGD 10(-10) group from day 6 to day 18 compared to RGD 0 and RGD 10(-4). At day 18, the percentage of mineralized area was significantly higher for RGD 10(-10) compared to RGD 0 (p < 0.05). In the present study, this new method was found suitable to anchor RGD containing species on titanium: this favored adhesion and spreading of osteoblast-like cells and mineralization compared to noncoated titanium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call