Abstract

The non-phosphorylated neurofilament marker, SMI-32, identifies ventral horn motor neurons in spinal cord slice. We show here that SMI-32 marks a subset of spinal cord neurons in culture. Many of these neurons ('large SMI-32(+) neurons') have morphological characteristics of identified motor neurons in vitro: large cell body size (> 20 microns), extensive neuritic arborization and, generally, one particularly long process. These neurons are preferentially injured by brief (40 min) kainate exposures, but not by NMDA exposures. This rapidly triggered damage to large SMI-32(+) neurons is Ca2+ dependent. In addition, most of the SMI-32(+) neurons exhibit kainate-stimulated Co2+ uptake, a histochemical technique which marks neurons possessing Ca(2+)-permeable AMPA/kainate receptor-gated channels. The unusual vulnerability of large SMI-32(+) spinal neurons to kainate toxicity may result from rapid Ca2+ entry through Ca(2+)-permeable AMPA/kainate channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.