Abstract

ObjectiveThe purpose of this study was to compare the static (SFF) and kinetic frictional forces (KFF) of a computer-aided design and computer-aided manufacturing lingual bracket (CAD/CAM-LB) with those of conventional LB (Con-LB) and Con-LB with narrow bracket width (Con-LB-NBW) under 3 tooth displacement conditions.MethodsThe samples were divided into 9 groups according to combinations of 3 LB types (CAD/CAM-LB [Incognito], Con-LB [7th Generation, 7G], and Con-LB-NBW [STb]) with 3 displacement conditions (no displacement [control], maxillary right lateral incisor with 1-mm palatal displacement [MXLI-PD], and maxillary right canine with 1-mm gingival displacement [MXC-GD]; n = 6/group). While drawing a 0.016-inch copper or super-elastic nickel-titanium archwire with 0.5 mm/min for 5 minutes in a chamber maintained at 36.5℃, SFF and KFF were measured. The Kruskal-Wallis method with Bonferroni correction was performed.ResultsThe Incognito group demonstrated the highest SFF, followed by the 7G and STb groups ([STb-control, STb-MXLI-PD, Stb-MXC-GD] < [7G-MXC-GD, 7G-MXLI-PD, 7G-control] < [Incognito-MXLI-PD, Incognito-control, Incognito-MXC-GD]; p < 0.001). However, there were no significant differences in SFF among the 3 displacement conditions within each bracket group. Within each displacement condition, the Incognito group demonstrated the highest KFF, followed by the 7G and STb groups ([STb-control, STb-MXLI-PD] < Stb-MXC-GD < 7G-MXLI-PD < [7G-control, 7G-MXC-GD] < [7G-MXC-GD, Incognito-MXLI-PD, Incognito-control] < [Incognito-control, Incognito-MXC-GD]; p < 0.001). MXC-GD exhibited higher KFFs than MXLI-PD in the same bracket group.ConclusionsThe slot design and ligation method of the CAD/CAM-LB system should be modified to reduce SFF and KFF during the leveling/alignment stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call