Abstract

In the present study, we evaluated the nephrotoxicity of individual mycotoxins and combinations of aflatoxin B1 (AFB1), zearalenone (ZEA), deoxynivalenol (DON), and fumonisin B1 (FB1) to livestock using porcine kidney 15 cells (PK-15) as a disease model via biochemical approaches. The toxicity of individual mycotoxins on cell viability and cell membrane damage was determined using the MTT and lactate dehydrogenase (LDH) assays, respectively. Individual cytotoxicity of mycotoxins in increasing order were FB1<ZEA<AFB1<DON. The MTT results of central composite design (CCD) showed synergetic effects after co-exposure of AFB1+ZEA or AFB1+DON; however, AFB1 and ZEA showed antagonistic effects in the ternary mixtures. AFB1 and DON significantly induced ROS production and apoptosis in a concentration-dependent manner, but ZEA (10–40μM) had no effect on cell apoptosis and only slightly induced ROS production. ZEA ameliorated the ROS production caused by 1μM AFB1; however, ZEA and DON displayed synergistic effects in combination with AFB1 at 5 and 10μM. The existence of 10μM ZEA attenuated AFB1-induced apoptosis. In conclusion, AFB1+ZEA or DON showed synergetic effects on cytotoxicity. Low levels of AFB1 were antagonistic to ZEA, but high doses of AFB1 displayed synergistic effects with ZEA or DON on oxidative damage. ZEA also ameliorated AFB1-induced apoptosis. Generally, the combined effects of mycotoxins acted in a concentration-dependent manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call