Abstract

The amount of fluoride release from dental cements necessary for an anticariogenic effect is not established; moreover, the possible toxic effects due to high fluoride and aluminum release are not well known and the results are still controversial. The aim of our study was to evaluate fluoride (F) and aluminum (Al) release from dental cements using a 'standardized approach' according to the end-use of the materials, i.e. biocompatibility testing. Two polyacid-modified resin composites of recent application, commonly called compomers (Dyract® and Dyract Cem®), were compared with two conventional acid-based (Fuji I™, Ketac-Cem®) and two resin-modified (Vitremer™, Vitrebond™) glass-ionomer cements (GICs). All types of cement are used in dentistry and are commercially available. Extracts of the cements into minimum essential medium, after setting over a 1-h (group A) and 1-week (group B) period, were performed. The extraction conditions were rigorously standardized. Mean values +/- standard deviation of F- and Al-levels in such extracts were measured and were expressed as μg g-1 (micrograms of ions per gram of cement). A great difference in the amount of ion release, both F and Al, was shown among the tested materials. The GICs, as well as Ketac-Cem®, released more F and Al than the compomers. All of the materials released the greatest proportion of ions when the extraction was performed in the first hour after mixing (group A). Al- and F-values showed a highly significant positive correlation, independently from the curing time. We conclude that the biological assessment of dental cements can be performed only if a preevaluation of the leachables is obtained by applying a standardized protocol which allows a useful comparison between the different materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.