Abstract

In vitro permeability data have a central place in absorption risk assessments in drug discovery and development. For compounds where active efflux impacts permeability in vitro, the inherent passive membrane permeability ("intrinsic permeability") gives a concentration-independent measure of the compound's permeability. This work describes the validation of an in vitro intrinsic permeability assay and application of the data in a predictive in silico model. Apparent intrinsic permeability (Papp) across Caco-2 cell monolayers is determined in the presence of an optimized cocktail of chemical inhibitors toward the three major efflux transporters ABCB1, ABCC2, and ABCG2. The intrinsic Papp value gives an estimate of passive permeability, which is independent of transporter expression levels and not limited by solubility or cell toxicity. An in silico model has been established to predict the Caco-2 intrinsic permeability and shown to consistently identify highly permeable compounds. The new intrinsic permeability assay is useful for early absorption estimates and suitable for absorption risk assessment in DMPK and pharmaceutical development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.