Abstract

In this paper, Bombyx mori silk sericin nanocarriers with a very low size range were obtained by nanoprecipitation. Sericin nanoparticles were loaded with doxorubicin, and they were considered a promising tool for breast cancer therapy. The chemistry, structure, morphology, and size distribution of nanocarriers were investigated by Fourier transformed infrared spectroscopy (FTIR–ATR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and dynamic light scattering (DLS). Morphological investigation and DLS showed the formation of sericin nanoparticles in the 25–40 nm range. FTIR chemical characterization showed specific interactions of protein–doxorubicin–enzymes with a high influence on the drug delivery process and release behavior. The biological investigation via breast cancer cell line revealed a high activity of nanocarriers in cancer cells by inducing significant DNA damage.

Highlights

  • Silks are natural protein-like fibers produced by arthropods, such as spiders or silkworms

  • The spectrum of doxorubicin had the following peaks: peak at 3517 cm−1 was assigned to water molecules bonded within the drug structure; peak at 3323 cm−1 was attributed to hydroxyl stretching vibration; peak at 3128 cm−1 was attributed to N-H stretching vibration; peaks at 2977 cm−1 and 2931 cm−1 were assigned to C-H stretching vibration within the ring; peak at 1728 cm−1 was assigned to C=O stretching in carbonyl group within vibrating in quinone and ketone; peak at

  • MarkMandal of apoptosis, our data suggest that DOX encapsulation in Ser NPs triggers apopto and Kundu showed that paclitaxel-loaded sericin nanocarriers induced apoptosis of MCF–7 breast cells.we demonstrated that DOX-loaded Ser NPs signifiin MCF-7 breastcancer cancer cells

Read more

Summary

Introduction

Silks are natural protein-like fibers produced by arthropods, such as spiders or silkworms. Domestic-species-producing silks have been used since antiquity. Certain species, such as domesticated silkworm Bombyx mori, have a central role within textile industry applications and more recently in biomedical applications [1,2,3]. Bombyx mori proteins have been intensively studied for their biocompatibility, great mechanical properties, tunable biodegradation process, easy processing, and favorable source supply. Silk is composed of two major proteins: silk fibroin (fibrous protein) and silk sericin (globular protein) [4,5,6,7,8]. Silk fibroin is the main protein with large usage in the biomedical field. Silk sericin was originally removed as it was associated with the general immune body response to silks [9,10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call