Abstract

BackgroundPlant-based foods have been used in traditional health systems to treat diabetes mellitus. The successful prevention of the onset of diabetes consists in controlling postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide. In this study, five plant-based foods were investigated for intestinal α-glucosidase and pancreatic α-amylase. The combined inhibitory effects of plant-based foods were also evaluated. Preliminary phytochemical analysis of plant-based foods was performed in order to determine the total phenolic and flavonoid content.MethodsThe dried plants of Hibiscus sabdariffa (Roselle), Chrysanthemum indicum (chrysanthemum), Morus alba (mulberry), Aegle marmelos (bael), and Clitoria ternatea (butterfly pea) were extracted with distilled water and dried using spray drying process. The dried extracts were determined for the total phenolic and flavonoid content by using Folin-Ciocateu’s reagent and AlCl3 assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively.ResultsThe phytochemical analysis revealed that the total phenolic content of the dried extracts were in the range of 230.3-460.0 mg gallic acid equivalent/g dried extract. The dried extracts contained flavonoid in the range of 50.3-114.8 mg quercetin equivalent/g dried extract. It was noted that the IC50 values of chrysanthemum, mulberry and butterfly pea extracts were 4.24±0.12 mg/ml, 0.59±0.06 mg/ml, and 3.15±0.19 mg/ml, respectively. In addition, the IC50 values of chrysanthemum, mulberry and butterfly pea extracts against intestinal sucrase were 3.85±0.41 mg/ml, 0.94±0.11 mg/ml, and 4.41±0.15 mg/ml, respectively. Furthermore, the IC50 values of roselle and butterfly pea extracts against pancreatic α-amylase occurred at concentration of 3.52±0.15 mg/ml and 4.05±0.32 mg/ml, respectively. Combining roselle, chrysanthemum, and butterfly pea extracts with mulberry extract showed additive interaction on intestinal maltase inhibition. The results also demonstrated that the combination of chrysanthemum, mulberry, or bael extracts together with roselle extract produced synergistic inhibition, whereas roselle extract showed additive inhibition when combined with butterfly pea extract against pancreatic α-amylase.ConclusionsThe present study presents data from five plant-based foods evaluating the intestinal α-glucosidase and pancreatic α-amylase inhibitory activities and their additive and synergistic interactions. These results could be useful for developing functional foods by combination of plant-based foods for treatment and prevention of diabetes mellitus.

Highlights

  • Plant-based foods have been used in traditional health systems to treat diabetes mellitus

  • Diabetes mellitus is an endocrine and metabolic disorder characterized by chronic hyperglycemia, dyslipidemia, and protein metabolism that result from defects in both regulations of insulin secretion and/or insulin action

  • Current therapeutic strategy for the control of postprandial hyperglycemia is the inhibition of α-glucosidase and αamylase, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide [2]. α-Glucosidase inhibitor has been recognized as a therapeutic approach for modulation of postprandial hyperglycemia, which is the earliest metabolic defect to occur in type 2 diabetes

Read more

Summary

Introduction

Plant-based foods have been used in traditional health systems to treat diabetes mellitus. The successful prevention of the onset of diabetes consists in controlling postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide. Five plant-based foods were investigated for intestinal α-glucosidase and pancreatic α-amylase. Current therapeutic strategy for the control of postprandial hyperglycemia is the inhibition of α-glucosidase and αamylase, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide [2]. It has been reported that α-glucosidase and pancreatic α-amylase inhibitors are associated with gastrointestinal side effects such as abdominal pain, flatulence, meteorism, and diarrhea in the diabetic patients [4]. Efforts have been directed at investigating intestinal α-glucosidase and pancreatic α-amylase inhibitors from plant-based foods that are largely free of major undesirable side effects

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call