Abstract

The in vitro inhibitory activity of the rice Bowman-Birk inhibitor (rBBI) or soybean Bowman-Birk inhibitor (sBBI) against trypsin-catalyzed activation of pro-matrix metalloproteinase 1 or 9 (pro-MMP-1 or pro-MMP-9), respectively, was investigated using electrophoresis with silver staining, heparin-enhanced zymography, biotinylated gelatin, Biotrak assay, and fluorescence quenched substrate hydrolysis. rBBI at concentrations of 0.08-0.352 mg/mL dose-dependently inhibited the in vitro activation of 45 microg/mL pro-MMP-1 by trypsin. Heparin-enhanced zymography analysis of pro-MMP-1, trypsin-activated MMP-1, and a mixture of pro-MMP-1-trypsin-rBBI showed clear zones associated with trypsin-activated MMP-1 and the absence of clear zones in lanes containing pro-MMP-1 or a mixture of pro-MMP-1, trypsin, and rBBI. The results of the Biotrak assay also indicated that rBBI dose-dependently suppressed the activation of pro-MMP-1 by trypsin. sBBI dose-dependently inhibited the activation of 100 microg/mL of pro-MMP-9 by trypsin. Biotinylated gelatin assays demonstrated that pro-MMP-9 or pro-MMP-9 in the presence of trypsin and BBI did not hydrolyze gelatin, whereas p-aminophenylmercury acetate (APMA)-activated MMP-9 and trypsin-activated MMP-9 caused significant hydrolysis of gelatin. Quenched fluorescence substrate hydrolysis for total MMP activity showed that pro-MMP-1 or pro-MMP-9 did not hydrolyze the substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2; active MMP-1 or MMP-9 hydrolyzed the substrate, but lower substrate hydrolysis was obtained when pro-MMP-1 or pro-MMP-9 was incubated with trypsin in the presence of increasing concentrations of rBBI. The results are discussed in light of the role of MMP-1 and MMP-9 in the process of angiogenesis and the potential of rBBI or sBBI as a functional food ingredient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.