Abstract

The efficacy of antifungal treatment has been diminished by the biodistribution limitations of amphotericin B (AmB) due to its pharmacological profile, as well as the severe side effects it causes. A cellular drug-delivery system, which incorporates human erythrocytes (RBCs) loaded with an AmB nanosuspension (AmB-NS), is developed in order to improve antifungal treatment. AmB-NS encapsulation in RBCs is achieved by using hypotonic hemolysis, leading to intracellular AmB amounts of 3.81 +/- 0.47 pg RBC(-1) and an entrapment efficacy of 15-18%. Upon phagocytosis of AmB-NS-RBCs, leukocytes show a slow AmB release over ten days, and no alteration in cell viability. This results in an immediate, permanent inhibition of intra- and extracellular fungal activity. AmB-NS-RBC-leukocyte-mediated delivery of AmB is efficient in amounts 1000 times lower than the toxic dose. This drug-delivery method is effective for the transport of water-insoluble substances, such as AmB, and this warrants consideration for further testing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call