Abstract
In order to observe the effects of serum albumin and fibrinogen on biophysical surface properties and the morphology of pulmonary surfactant in vitro, we measured the surface adsorption rate, dynamic minimum and maximum surface tension (min-, max-ST) by Pulsating Bubble Surfactometer, and demonstrated ultrastructures on a series of mixtures with varying concentrations of albumin or fibrinogen and Surfactant-TA. The albumin and fibrinogen significantly inhibited the adsorption rate and ST-lowering properties of surfactant through increasing STs of adsorption rate, min-ST, and max-ST. The characteristic morphology of the Surfactant-TA changed from lamellar rod-like structure with open ends into spherical structures with loss of their open ends by mixing with albumin or fibrinogen. These inhibitory effects of albumin and fibrinogen on surface properties of surfactant were dependent upon the increasing concentration of albumin or fibrinogen. We concluded that albumin and fibrinogen significantly altered surfactant function and its ultrastructural morphology in vitro. These findings support the concept that albumin and fibrinogen-induced surfactant dysfunction may play an important role in the pathophysiology of adult respiratory distress syndrome, and this adverse effect of albumin and fibrinogen on surfactant might be overcome by administration of large doses of exogenous surfactant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.