Abstract
Nanostructured materials are ubiquitous in tissue engineering, drug delivery, and biosensing applications. Nonetheless, little is known about the inflammatory response of materials differing in surface nanoarchitecture. Here we report human monocyte viability and morphology, in addition to inflammatory cytokines (IL-1alpha and B, IL-6, IL-10, IFN-alpha and gamma, TNF-alpha, IL-12, MIP-1alpha and beta), and reactive oxygen species production on several nanostructured surfaces, compared to flat surfaces of the same material. The surfaces studied were titiania nanotubes, short and long silicon oxide, and polycaprolactone nanowires. The results indicate that inflammation on titanium, polycaprolactone, and silicon oxide materials can be reduced by restructuring the surface with nanoarchitecture. Nanostructured surfaces display a reduced inflammation response compared to a respective flat control, with significant differences between titanium and nanotubular titanium. Little difference is observed in the inflammatory response between short and long nanowires of PCL and silicon oxide. All surfaces are significantly less inflammatory than the positive control, lipopolysaccharide. Additionally, we show that flat titanium is more inflammatory than silicon oxide and polycaprolactone. This study shows that nanoarchitecture can be used to reduce the inflammatory response of human monocytes in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.