Abstract

The effect of various disulfide-reducing agents including cysteine and its alkylesters on the induction of germinal vesicle breakdown (GVBD) in starfish (Asterina pectinifera) oocytes was investigated in vitro. Although cysteine did not induce GVBD, its alkylesters were effective. Cysteine alkylesters significantly mimicked the effect of 1-methyladenine (1-MeAde), the naturally occurring maturation-inducing hormone of starfish, on oocyte maturation. However, the effective concentrations and pH optimum for stimulation of oocyte maturation varied between 1-MeAde and the cysteine alkylesters. By comparing pKa values of the disulfide-reducing agents to pH of the medium, it is suggested that the redox potential of a disulfide-reducing agent is an important indicator its ability to induce oocyte maturation. With the use of fluorescent probes for thiol groups, it was shown that the fluorescence in oocyte cortices increased within 5 min after administration of 1-MeAde. The fluorescence intensity in the cortices also increased after treatment with cysteine and its alkylesters, although the intensity was much stronger with the latter. Furthermore, both 1-MeAde and the disulfide-reducing agents were suggested to cause reduction of thiol groups within the plasma membrane as opposed to those on the external and internal surfaces. Thus, it is suggested that disulfide-reducing agents and 1-MeAde induce starfish oocyte maturation by changing the redox state of the thiol groups located within the oocyte plasma membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.