Abstract
A beam consisting of mainly 24 keV neutrons has been constructed for radiobiological studies to evaluate the potential of these particles for treating deep tumours by the boron capture reaction. The induction of chromosomal aberrations in human lymphocytes in vitro was examined and a linear dose effect with a relative biological effectiveness similar to fission neutrons was obtained. For samples placed at depths in a plastic phantom the aberration yields declined with depth at a rate matching the fall in the sum of dose due to proton recoils and neutron capture in nitrogen 14. The presence of boron 10 at 30 micrograms ml-1 did not affect the aberration yield. By using the mixed sample method, the probability of interphase death or mitotic delay in cells crossed by an alpha particle or lithium-7 ion produced in the boron capture reaction was shown to be close to 1.0. Thus these cells are prevented from coming to mitosis in culture. The implications for boron capture therapy are that this filtered beam has a "high LET" effect which could lead to poor normal tissue sparing. However there may be a significant therapeutic advantage due to a high probability of killing tumour cells that have incorporated boron 10.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.