Abstract

Exposure to contaminants, such as the herbicide glyphosate, can suppress protective immune functions. Glyphosate is the herbicide most used worldwide and has been found in plasma of more than 50 % of the Florida manatees and all-year-round in their aquatic environment. Our objectives were to analyze the consequences of glyphosate exposure on their immune responses via T-lymphocyte proliferation assays and transcriptomics. We isolated peripheral blood mononuclear cells (mainly lymphocytes) of free-ranging manatees and performed T-cell proliferation assays. We used transcriptomics to understand the consequences of glyphosate in vitro exposure. The 3 doses chosen ranged from environmentally relevant concentrations at 10 to 10,000 µg.L-1 that is considered a contamination scenario. Glyphosate caused a dose-dependent reduction in T-lymphocyte proliferation, with a significant mean reduction of 27.3 % at 10,000 µg.L-1 and up to 51.5 % in some individuals. Additionally, T-lymphocyte proliferation was significantly reduced in mid-winter compared to early winter. Transcriptomic analysis of peripheral blood mononuclear cells indicated that all doses of glyphosate (10, 1,000 and 10,000 µg.L-1) resulted in up-regulation of genes related to acute phase inflammation and inhibition of the T-lymphocyte proliferation pathway. Exposure to this contaminant along with other environmental stressors, such as extreme winters and red tide, might further affect the adaptive immune response of this threatened species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.