Abstract
Purpose Femoral artery stents are prone to fracture, and studying their deformations could lead to a better understanding of the cause of breakage. The present study sought to develop a method of imaging and analyzing stent deformation in vitro with use of a calibrated test device. Materials and Methods High-resolution (approximately 200 μm) volumetric data were obtained with a flat-panel detector–based C-arm computed tomography system. A nitinol stent placed in a testing device was imaged with various loads that caused bending, axial tension, and torsion. Semiautomatic software was developed to calculate the bending, extension, and torsion from the stent images by measuring the changes in the radius of curvature, eccentricity, and angular distortions. Results For the axial tension case, there was generally good agreement between the physical measurements and the image-based measurements. The bending measurements had better agreement at bend angles lower than 30°. For stent torsion, the hysteresis between the loading and unloading curves were larger for the image-based results compared with physical measurements. Conclusions An imaging and analysis framework has been set up for the analysis of stent deformations that shows fairly good agreement between physical and image-based measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.