Abstract

Neutrophils release web like-structures known as neutrophil extracellular traps (NETs) that ensnare and kill microorganisms. These networks are constituted of a DNA scaffold with associated antimicrobial proteins, which are released to the extracellular space as an effective mechanism to fight against invading microorganisms. In parallel with this beneficial role to avoid microbial dissemination and wall off infections, accumulating evidence supports that under certain circumstances, NETs can exert deleterious effects in inflammatory, autoimmune, and thrombotic pathologies. Research on NET properties and their role in pathophysiological processes is a rapidly evolving and expanding field. Here, we describe a combination of methods to achieve a successful in vitro NET visualization, semiquantification, and isolation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.