Abstract

Objective Heart valve and vascular prosthesis implantation is a common procedure for patients with heart valve stenosis or regurgitation and dilated or obstructive vascular disease. Drawbacks of conventional valve prostheses are the requirement for anticoagulant drugs, moderate durability, and suboptimal resistance to fatigue and tear. Dyneema Purity fibers are made from ultra-high-molecular-weight polyethylene filaments and are very thin, flexible, and fatigue and abrasion resistant and have high strength. Therefore, prostheses made from Dyneema Purity fibers might be attractive for use in the minimally invasive treatment of valvular- and vascular diseases. The aim of this study was to test the hemocompatibility of Dyneema Purity fibers in contact with blood. Methods Real-time platelet adhesion in human blood of 3 volunteers was quantified after 5 minutes of perfusion on single filaments (O 15 μm) of Dyneema Purity and polyester fibers. Plasma thrombin generation was measured by fluoroscopy for patches of Dyneema Purity fibers and for 5 commonly used polyester and expanded polytetrafluoroethylene cardiovascular prostheses. Results Platelet adhesion per 1 mm was 6 ± 1.4 on Dyneema Purity filaments and 15 ± 3.4 on polyester filaments (P = 0.02). Total formed thrombin and the time to peak of its maximum were noninferior for patches of Dyneema Purity fibers compared with the reference materials. Conclusions Dyneema Purity fibers are noninferior in adhesion and coagulation activation compared with commonly used cardiovascular prostheses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.