Abstract

Inactivating mutations in the tumor suppressor gene MEN1 cause the inherited cancer syndrome multiple endocrine neoplasia type 1 (MEN1). The ubiquitously expressed MEN1 encoded protein, menin, interacts with MLL (mixed-lineage leukemia protein), and together they are essential components of a multiprotein complex with histone methyl transferase activity. MLL is also essential for hematopoiesis, and plays a critical role in leukemogenesis via epigenetic regulation of Hoxa9 expression that also requires menin. Therefore we chose to explore the role of menin in hematopoiesis. We generated Men1 −/− embryonic stem (ES) cell lines, and induced them to differentiate in vitro. While these cells were able to form embryoid bodies (EBs) expressing the early markers Flk-1 and c-Kit, their ability to further differentiate into hematopoietic colonies was compromised. The Men1 −/− ES cells show reduced expression of Hoxa9 that can be recovered by reexpression of Menin. We demonstrate that the block in differentiation of Men1 −/− ES cell lines can be rescued not only by the expression of menin but also that of Hoxa9. These results suggest that, similar to MLL, menin is required for hematopoiesis, and this requirement may be mediated through regulation of Hoxa9 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.