Abstract

Quinic acid in its free form is broadly abundant in plants, and can accumulate in copious amounts in coffee, tea, and certain fruits. However, it has been mostly studied as chlorogenic acid, an ester of caffeic and quinic acids. When chlorogenic acid reaches the colon, it is hydrolyzed by microbial esterases releasing caffeic and quinic acids. While biotransformation of chlorogenic and caffeic acids have been elucidated by in vitro and in vivo studies, the gut metabolism of quinic acid has been so far overlooked. [U-13 C]-Quinic acid is submitted to a colonic model using human fecal microbiota for assessing its metabolic fate. The metabolite profiles formed along microbial biotransformation are monitored by a combined metabolomics approach, using both 2D GC- and ultra-HPLC-MS. Six metabolic intermediates are identified by incorporation of isotopic label. Two parallel degradation pathways could be proposed: (1) an oxidative route, leading to aromatization and accumulation of protocatechuic acid, and a (2) reductive route, including dehydroxylation to cyclohexane carboxylic acid. Elucidating the biotransformation of food bioactives by the gut microbiota is of relevance for understanding nutrition, interindividual variability and potential effects on human metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.