Abstract
Human osteoblastic bone marrow cells were cultured for periods of up to 28 days in control conditions and on the surface of a glass reinforced hydroxyapatite composite (HA/G1) and commercial hydroxyapatite (HA) plasma-sprayed coatings, in the "as-received" condition and after immersion treatment in culture medium for 21 days. Cultures were characterized for total protein content and alkaline phosphatase activity. Scanning electron microscope analyses were performed on control cultures, seeded materials and materials incubated in the absence of cells. Culture media were analyzed for total and ionized calcium and phosphorus concentrations throughout the incubation period. Immersion of HA/G1 and HA coatings in culture medium resulted in significant alterations to the levels of calcium and phosphorus in the medium, leading to surface modifications. However, seeded material samples showed significant differences in the pattern of variation of the levels of these species. Cell proliferation was observed in the "as-received" HA/G1 composite, but cell mediated formation of mineral deposits was not proved. In contrast, "as-received" HA hardly supported cell growth. Previously immersed material samples showed cell proliferation and evidence of biological formation of mineral deposits. However, the HA/G1 composite presented better surface characteristics for cell growth as the behavior of bone marrow cells was closer to that observed in control cultures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of materials science. Materials in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.