Abstract
There are various studies on the toxicological potentials of conventionally synthesized zinc oxide (ZnO) nanoparticles, which are useful tools for many medical applications. However, knowledge about the biologically synthesized ones is still limited. In this study, the potential of producing ZnO nanoparticles via a green synthesis method, which enables safer, environmentally, economical and controlled production by using the Symphoricarpos albus L. plant, was investigated. For this purpose, aqueous extract was obtained from the fruits of the plant and reacted with zinc nitrate precursor. Characterization of the synthesized product was carried out by SEM and EDAX analyzes. In addition, the biosafety of the product was also investigated by using the Ames/Salmonella, E. coli WP2, Yeast DEL, seed germination, and RAPD test systems. The results obtained from SEM studies showed that spherical nanoparticles with an average diameter of 30nm were synthesized as a result of the reaction. EDAX findings confirmed that these nanoparticles were composed of Zn and O elements. On the other hand, according to the findings of the biocompatibility tests, the synthesized nanoparticle did not show any toxic and genotoxic effects up to a concentration of 640μg/ml in any of the test systems. Accordingly, considering the findings of our study, it was concluded that the aqueous extract of S. albus fruits can be used for the green synthesis of ZnO nanoparticles, the products obtained successfully passed the biocompatibility tests in our study, and additionally, more comprehensive biocompatibility tests should be performed before industrial scale production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.