Abstract
Deltamethrin, a synthetic dibromo-pyrethroid insecticide, is extensively used in agriculture, forestry and in household products because of its high activity against a broad spectrum of insect pests (both adults and larvae), its low animal toxicity and its lack of persistence in the environment. Data on the genotoxicity and carcinogenicity of deltamethrin are rather controversial, depending on the genetic system or the assay used. The aim of this study was to further evaluate the potential genotoxic activity of deltamethrin. The in vitro genotoxicity of deltamethrin has been evaluated by assessing the ability of the insecticide to damage DNA (as evaluated using the single-cell microgel-electrophoresis or ‘comet’ assay) or induce sister-chromatid exchanges (SCE) and micronuclei (MN) in human peripheral blood leukocytes. All treatments were conducted with and without the presence of an external bioactivation source (±S9mix). The results indicate that deltamethrin, in the presence of metabolic activation (+S9mix), is able to induce DNA damage (double- and single-strand breaks, alkali-labile sites and open excision repair sites) as revealed by the increasing tail moment values observed with increasing doses. The frequency of SCE and MN were not statistically increased in deltamethrin-treated cells as compared to controls, both with and without S9mix. However, lower deltamethrin doses were tested, as compared to ‘comet’ assay, because of cytotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.