Abstract

Dendritic cells (DCs) represent one of the most important immune cell subsets in preventing the host from pathogen invasion by promoting both innate and adaptive immunity. Most research on human dendritic cells has focused on the easy-to-obtain dendritic cells derived in vitro from monocytes (MoDCs). However, many questions remain unanswered regarding the role of different dendritic cell types. The investigation of their roles in human immunity is hampered by their rarity and fragility, which especially holds true for type 1 conventional dendritic cells (cDC1s) and for plasmacytoid dendritic cells (pDCs). In vitro differentiation from hematopoietic progenitors emerged as a common way to produce different DC types, but the efficiency and reproducibility of these protocols needed to be improved and the extent to which the DCs generated in vitro resembled their in vivo counterparts required a more rigorous and global assessment. Here, we describe a cost-effective and robust in vitro differentiation system for the production of cDC1s and pDCs equivalent to their blood counterparts, from cord blood CD34+ hematopoietic stem cells (HSCs) cultured on a stromal feeder layer with a combination of cytokines and growth factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call