Abstract

BackgroundThe phosphoglycerate mutase (PGM) enzyme catalyzes the interconversion of 2- and 3-phosphoglycerate in the glycolytic /gluconeogenic pathways that are present in the majority of cellular organisms. They can be classified as cofactor-dependent PGM (dPGM) or cofactor-independent PGM (iPGM). Vertebrates, yeasts, and many bacteria have only dPGM, while higher plants, nematodes, archaea, and many other bacteria have only iPGM. A small number of bacteria, including Escherichia coli and certain archaea and protozoa, contain both forms. The silencing of ipgm in Caenorhabditis elegans (C. elegans) has demonstrated the importance of this enzyme in parasite viability and, therefore, its potential as an anthelmintic drug target. In this study, the role of the Brugia malayi (B. malayi) ipgm in parasite viability, microfilaria release, embryogenesis, and in vivo development of infective larvae post-gene silencing was explored by applying ribonucleic acid (RNA) interference studies.ResultsThe in vitro ipgm gene silencing by small interfering RNA (siRNA) leads to severe phenotypic deformities in the intrauterine developmental stages of female worms with a drastic reduction (~90%) in the motility of adult parasites and a significantly reduced (80%) release of microfilariae (mf) by female worms in vitro. Almost half of the in vitro-treated infective L3 displayed sluggish movement. The in vivo survival and development of siRNA-treated infective larvae (L3) was investigated in the peritoneal cavity of jirds where a ~45% reduction in adult worm establishment was observed.ConclusionThe findings clearly suggest that iPGM is essential for both larval and adult stages of B. malayi parasite and that it plays a pivotal role in female worm embryogenesis. The results thus validate the Bm-iPGM as a putative anti-filarial drug target.

Highlights

  • The phosphoglycerate mutase (PGM) enzyme catalyzes the interconversion of 2- and 3phosphoglycerate in the glycolytic /gluconeogenic pathways that are present in the majority of cellular organisms

  • The publication of the draft assembly of the B. malayi genome followed by an expansion in transcriptomic and genomic datasets has facilitated the identification of vital enzymes or proteins of filarial parasites that can be exploited as drug targets

  • Fluorescence could be clearly detected at 24 hours in the hypodermis, intestine, and uterus of the female worms, while in the L3 and mf, small interfering RNA (siRNA) could be visualized throughout the body of the filarial parasites

Read more

Summary

Introduction

The phosphoglycerate mutase (PGM) enzyme catalyzes the interconversion of 2- and 3phosphoglycerate in the glycolytic /gluconeogenic pathways that are present in the majority of cellular organisms. Lymphatic filariasis (LF) is a vector-borne helminth disease caused by slender nematodes, Wuchereria bancrofti, Brugia malayi (B. malayi), and B. timori This incapacitating disease infects over 120 million people in 72 tropical and subtropical countries, while more than. The publication of the draft assembly of the B. malayi genome followed by an expansion in transcriptomic and genomic datasets has facilitated the identification of vital enzymes or proteins of filarial parasites that can be exploited as drug targets. This would further assist in the designing of potential antifilarial compounds and in understanding of gene functions [6,7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call