Abstract
There is a growing trend in incorporating biomass-based engineered nanomaterials into food products to enhance their quality and functionality. The zeta potential, droplet size, microstructure, and content of free fatty acid (FFA) release were determined to investigate the influence of a plant-derived particle stabilizer, i.e., lignin-containing cellulose nanofibrils (LCNFs). Remarkable differences were observed during digestion stages, which were found to be correlated with the concentrations of LCNFs. The gradual FFA release in the small intestine stage from LCNF-coated lipid droplets was monitored over time, with a final lowest release of FFAs amounting to 26.3% in the emulsion containing 20.0% (v/v) of the dispersed phase stabilized by 3 mg/mL of LCNFs. This release can be attributed to the physical barrier at lipid droplet surfaces and the network effect created by the free LCNFs in the continuous phase. This work provides a foundation for the potential application of nature-derived LCNF materials in reducing fat absorbance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.