Abstract

An oil body dispersion (11.3% fat) was prepared by wet disintegration of walnuts and was then subjected to a two-step model of in vitro digestion. In a gastric environment, proteolysis by pepsin led to the destabilization and coalescence of the oil bodies. Aggregation of the coalesced oil bodies was apparent under a confocal microscope, with aggregates up to 275 μm in size. Pepsin-resistant peptides and proteins remained at the surface of the oil bodies, and some were further resistant to intestinal proteases. Under intestinal conditions, the hydrolysis of walnut triglycerides led to the spontaneous formation of a new type of multiple emulsions, ranging from 2 to 45 μm in size and with protein material inside the inner water droplets. Transmission electron microscopy revealed the presence of a liquid-crystalline phase of bile salts and lipolytic products at the surface of the oil droplets and some bile salt crystals at the surface of the inner water droplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.