Abstract

Three orthogonal components of the tibiofemoral and patellofemoral forces were measured simultaneously for knees with intact cruciate ligaments (nine knees), following anterior cruciate ligament resection (six knees), and subsequent posterior cruciate ligament resection (six knees). The knees were loaded using an experimental protocol that modeled static double-leg squat. The mean compressive tibial force increased with flexion angle. The mean anteroposterior tibial shear force acted posteriorly on the tibia below 50 deg flexion and anteriorly above 55 deg. Mediolateral shear forces were low compared to the other force components and tended to be directed medially on both the patella and tibia. The mean value of the ratio of the resultant tibial force divided by the quadriceps force decreased with increasing flexion angle and was between 0.6 and 0.7 above 70 deg flexion. The mean value of the ratio of the resultant tibiofemoral contact force divided by the resultant patellofemoral contact force decreased with increasing flexion and was between 0.8 and 1.0 above 55 deg flexion. Cruciate ligament resection resulted in no significant changes in the patellar contact forces. Following resection of the anterior cruciate ligament, the tibial anteroposterior shear force was directed anteriorly over all flexion angles tested. Subsequent resection of the posterior cruciate ligament resulted in an approximately 10 percent increase in the quadriceps tendon and tibial compressive force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.