Abstract

In vitro folliculogenesis of cryopreserved ovarian tissue could be an effective method for insuring fertility for patients who receive gonadotoxic treatment. Although several culture systems have been described for growing female gametes in vitro, the production of competent oocytes for further development remains a considerable challenge. The purpose of our study was to determine whether maternal primary imprinting progresses normally during mouse oocyte growth in vitro. We analysed the DNA methylation status of differentially methylated regions of the imprinted genes H19, Mest/Peg1 and Igf2R using fully grown germinal vesicle-stage oocytes (fg oocytes) produced by in vitro folliculogenesis from early preantral follicles. When compared to fg oocytes removal from control females, we observed after in vitro development, a loss of methylation at the Igf2R locus in six out of seven independent experiments and Mest/Peg1 locus (one out of seven), and a gain of methylation at the H19 locus (one out of seven). These results provide insight into the dysregulation of the process of primary imprinting during oocyte growth in vitro and highlight the need for effective new biomarkers to identify complete nuclear reprogramming competence after in vitro folliculogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.