Abstract
In dermatology, the in vivo spectral fluorescence measurements of human skin can serve as a valuable supplement to standard non-invasive techniques for diagnosing various skin diseases. However, quantitative analysis of the fluorescence spectra is complicated by the fact that skin is a complex multi-layered and inhomogeneous organ, with varied optical properties and biophysical characteristics. In this work, we recorded, in vitro, the laser-induced fluorescence emission signals of healthy porcine skin, one of the animals, which is considered as one of the most common models for investigations related to medical diagnostics of human cutaneous tissues. Differences were observed in the form and intensity of the fluorescence signal of the porcine skin, which can be attributed to the different concentrations of the native fluorophores and the variable physical and biological conditions of the skin tissue. As the light transport in the tissue target is directly influencing the absorption and the fluorescence emission signals, we performed Monte Carlo simulation of the light distribution in a five-layer model of human skin tissue, with a pulsed ultraviolet laser beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.