Abstract
The term nanocomposite refers to organic:inorganic composites where one phase, typically the inorganic phase, has dimensions on the nanoscale. Several authors have noted the potential benefit of biomedical application of nanocomposite technology, and have suggested using quaternary ammonium compounds (QAC) as an organic modification to enhance dispersion of nanoparticles within polymer matrices. This study aimed to examine fibroblast responses in vitro to a range of nanocomposites using different organic modifiers. Composite materials were prepared from a polyether urethane (PEU) and various unmodified and organically modified montmorillonite (MMT) nanoparticles. QAC and amino undecanoic acid (AUA) modified-MMT were added to PEU at loadings ranging from approximately 1 to 15 wt %. Composites with organically modified QAC and AUA particles displayed partially exfoliated and intercalated silicate morphology, respectively. Nanocomposites showed increases in ultimate tensile properties for materials with lower QACMMT loadings. However QAC was shown to significantly inhibit cell growth following release from PEU-QACMMT under extraction conditions mimicking those of the physiological environment. Materials containing silicate modified using AUA were cytocompatible. The results of this study suggest that QAC may be unsuitable as organic modifiers for nanoparticles destined for biomedical use. Alternative modifiers based on AUA confer equivalent dispersion and are of low toxicity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.