Abstract

In vitro fertilization (IVF) technology has been broadly applied to solve human infertility in recent years. However, the physical tools for IVF remain unchanged over several decades before microfluidic technology was introduced in this field. Here, we report a novel microdevice that integrates each step of IVF, including oocyte positioning, sperm screening, fertilization, medium replacement, and embryo culture. Oocytes can be singly positioned in a 4 × 4 array of octacolumn units. The four symmetrical straight channels, crossing at the oocyte positioning region, allowed efficient motile sperm selection and facilitated rapid medium replacement. The fertilization process and early embryonic development of the individual zygote was traced with microscopic recording and analyzed by in situ fluorescent staining. The murine sperm motility was increased from 60.8 ± 3.4% to 96.1 ± 1.9% through the screening channels. The embryo growth rate and blastocyst formation were similar between the routine Petri dish group and the microdevice group. The healthy blastocysts developed in the microdevice could be conveniently retrieved through a routine pipetting operation and used for further embryo transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.