Abstract

Copra meal hydrolysate (CMH) is obtained by hydrolyzing defatted copra meal with β-mannanase from Bacillus circulans NT 6.7. In this study, we investigated the resistance of CMH to upper gastrointestinal tract digestion and the fecal fermentation profiles of CMH. Fecal slurries from four healthy human donors were used as inocula, and fructooligosaccharides (FOS) were used as a positive prebiotic control. Fecal batch cultures were performed at 37°C under anaerobic conditions. Samples were collected at 0, 10, 24 and 34h for bacterial enumeration via fluorescent in situ hybridization and organic acid (OA) analysis. In vitro gastric stomach and human pancreatic α-amylase simulations demonstrated that CMH was highly resistant to hydrolysis. Acetate was the main fermentation product of all the substrates. The proportions of acetate production of the total OAs from FOS, CMH and yeast mannooligosaccharides (MOS) after 34h of fermentation did not significantly differ (69.76, 65.24 and 53.93%, respectively). At 24h of fermentation, CMH promoted the growth of Lactobacillus and Bifidobacterium groups (P < 0.01) and did not significantly differ from the results obtained using FOS. The results of in vitro fecal fermentation of CMH indicate that CMH can promote the growth of beneficial bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call