Abstract

Delivery of neurotrophic molecules to the CNS is a potential treatment for preventing the neuronal loss in neurological disorders such as Huntington's disease (HD). Choroid plexus (CP) epithelial cell transplants secrete several neurotrophic factors and are neuroprotective in rat and monkey animal models of HD. HD patients receiving CP transplants would likely receive a course of immunosuppressant/anti-inflammatory treatment postsurgery and would remain on psychoactive medications to treat their motor, psychiatric, and emotional symptoms. Therefore, we examined whether CP epithelial cells are impacted by incubation with cyclosporine A (CsA), dexmethasone, haloperidol, fluoxetine, and carbamezapine. In each case, DNA was quantified to determine cell number, a formazen dye-based assay was used to quantify cell metabolism, and vascular endothelial growth factor (VEGF) levels were measured as a marker of protein secretion. Except for the highest dose of fluoxetine, none of the drugs tested exerted any detrimental effect on cell number. Incubation with CsA or dexamethasone did not have any consistent significant effect on VEGF secretion or cell metabolism. Carbamazepine was without effect while only the highest dose of haloperidol tested modestly lowered cell metabolism. VEGF secretion and cell metabolism was not measurable from CP cells exposed to 100 microM fluoxetine. These data continue to support the potential use of CP transplants in HD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call