Abstract

The patient-specific aortic silicone model was established based on CTA data. The digital particle image velocimetry (DPIV) test method in the modified ViVitro pulsatile flow system was used to investigate the aortic hemodynamic performance and flow field characteristics before and after transcatheter aortic valve replacement (TAVR). The results showed that the hemodynamic parameters were consistent with the clinical data, which verified the accuracy of the model. From the comparative study of preoperative and postoperative effective orifice area (0.33 cm2 and 1.78 cm2), mean pressure difference (58 mmHg and 9 mmHg), percentage of regurgitation (52% and 8%), peak flow velocity (4.60 m/s and 1.81 m/s) and flow field distribution (eccentric jet and uniform jet), the immediate efficacy after TAVR is good. From the perspective of viscous shear stress and Reynolds shear stress, the risk of hemolysis and thrombotic problems was low in preoperative and postoperative patient-specific models. This study provides a set of reliable DPIV testing methods for aortic flow field, and provides biomechanical basis for the immediate and long-term effectiveness of TAVR from the perspective of hemodynamics and flow field characteristics. It has important application value in clinical diagnosis, surgical treatment and long-term evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.