Abstract
Drilling is a common surgical procedure for fracture treatment and reconstruction in multiple surgical fields, including orthopaedics, neurology, and dentistry. Drilling delicate tissue (such as bone) with a hard metallic tool is considered notorious for inducing mechanical and thermal damage, which can adversely affect osseointegration and may weaken the bond between the bone and implant, or other fixative devices anchoring the bone. The aim of this study is to explore the benefits of vibrational drilling (VD) in overcoming the complications associated with conventional drilling (CD). Drilling tests were performed on fresh cortical bone with the intention of investigating the effect of a range of frequencies, in combination with drilling speed and feed rate, on biological damage around the drilling region using histological sections of skeletally mature bone. The study examined the most influential factors and optimal combination of parameters for safe and efficient drilling in bone. Results from Taguchi grey relational analysis showed that a lower drilling speed and feed rate combined with a frequency of 20 kHz were favourable parameters for safe drilling in bone. Accordingly, VD using controlled parameters may be an alternative to CD in bone surgical procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.