Abstract

Among markers of glioblastoma initiating cells, AC133 has been shown to be associated with glioblastoma resistance and malignancy. Recently, it was demonstrated that increasing oxygen tension (pO2) down-regulated AC133 expression in glioblastoma cells in vitro. In order to better understand extrinsic factor regulation of AC133, this work aimed to investigate the relationship between cell culture pO2, AC133 expression, and tumor development and phenotype. Using treatments with CoCl2 and HIF-1α shRNA knockdowns on non-sorted human primary glioblastoma cells cultured at low (3%) versus high (21%) oxygen tension, we established a responsibility for low pO2 in the maintenance of high levels of AC133 expression, with a major but non-exclusive role for HIF-1α. We also demonstrated that human glioblastoma cells previously cultured under high oxygen tension can lose part of their aggressiveness when orthotopically engrafted in SCID mice or lead to tumors with distinct phenotypes and no re-expression of AC133. These observations showed that the specific pO2 microenvironment irreversibly impacts glioblastoma cell phenotypes, highlighting the pertinence of culture conditions when extrapolating data from xenogenic models to human cells in their source environment. They also raised AC133 as a marker of non-exposure to oxygenated areas rather than a marker of aggressiveness or low pO2 niches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.