Abstract

Despite advances in stent technologies, restenosis remains a serious problem of interventional cardiology and is considered as a consequence of the progressing inflammation within the vessel wall. Thus, attempts to extinguish this inflammatory process undoubtedly motivate the development of a coating that exhibits immunomodulatory properties. Hence, we propose a polydopamine-based-coating functionalized with an anti-inflammatory interleukin is reported. By the ATR-FTIR spectroscopy and AFM examination the incorporation of cytokines into the coating structure is confirmed, thus effective functionalization is proved. The gradual delivery of cytokines allows to limit the influence of IL-4 and IL-10 deficiency, which is recognized as a restenosis risk factor. A relatively steady cytokine release profile exhibits therapeutic potential in the first days after implantation and in preventing late complications on cellular model. In vitro coating studies prove the promotion of endothelialization in the initial stage after implantation, being consistent with present treatment strategies. The limitation of IL-8 and MCP-1 daily release by coating-interacted-endothelium significantly reduce another risk factor of restenosis. Finally, by assessing the changes in THP-1 differentiation, the coating immunological activity is confirmed, so the binding procedure do not impair biological properties of the interleukin. Therefore, it can be concluded that proposed anti-inflammatory coating can reduce the probability of restenosis to a minimum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call