Abstract
The crucial molecular factors that shape the interfaces of lipid-binding proteins with their target ligands and surfaces remain unknown due to the complex makeup of biological membranes. Cholesterol, the major modulator of bilayer structure in mammalian cell membranes, is recognized by various proteins, including the well-studied cholesterol-dependent cytolysins. Here, we use invitro evolution to investigate the molecular adaptations that preserve the cholesterol specificity of perfringolysin O, the prototypical cholesterol-dependent cytolysin from Clostridium perfringens. We identify variants with altered membrane-binding interfaces whose cholesterol-specific activity exceeds that of the wild-type perfringolysin O. These novel variants represent alternative evolutionary outcomes and have mutations at conserved positions that can only accumulate when epistatic constraints are alleviated. Our results improve the current understanding of the biochemical malleability of the surface of a lipid-binding protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.