Abstract

Oxygen radicals attack guanine bases in DNA but they also attack cytoplasmic GTP forming 8-oxoGTP. The presence of 8-oxoGTP in cytoplasm is evidenced by the fact that cells contain MutT/MTH1 which hydrolyze 8-oxoGTP into 8-oxoGMP. In this study, the interaction between 8-oxoGTP and Ras, a small GTP-binding protein, was tested in vitro, and the action of 8-oxoGTP was compared to that of GTP. When purified Ras was treated with 8-oxoGTPγS, Ras was activated, as indicated by the enhanced binding of Ras with Raf-1. GTPγS also activated Ras but 8-oxoGTPγS had a much more potent effect. In lysates of human embryo kidney 293 cells, 8-oxoGTPγS activated not only Ras but also the downstream effectors of the Ras-ERK pathway, i.e., Raf-1 and ERK1/2. In contrast to Ras, other small GTP-binding proteins, Rac1 and Cdc42, were inactivated by 8-oxoGTPγS, whereas both of these proteins were activated by GTPγS, indicating that the biological natures of 8-oxoGTP and GTP differ. These results suggest the possibility that 8-oxoGTP is not a simple by-product but a functional molecule transmitting an oxidative signal to small GTP-binding proteins like Ras.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.