Abstract

Wollastonite nanopowder (β-CaSiO3) is the most nanoceramic powder that is most frequently applied in biomedical applications due to its good bioactivity and biocompatibility. Although the preparation of wollastonite in a solid-state is distinguished as a simple and cheap method with large-scale production, it requires high temperatures (=1400 °C) and consumes quite a long time. The wet methods are considered the best when it comes to preparing the wollastonite nanopowders. However, it has some drawbacks such as its extravagant raw materials and its shorting in preparation which inhibits successful coverage for large-scale production. Herein facile, one-pot modified co-precipitation approach with an easy procedure, shorter reaction time, and in-expensive precursor sodium meta-silicate-pentahydrate and CaCO3 has been utilized for large-scale production of wollastonite nano-powders (76–150 nm). The precipitated product was calcined at different temperatures (800, 900, 1000, and 1100 °C). The phase composition and microstructure of the calcined powders were investigated. They were analyzed by XRD, FTIR, FESEM, and HRTEM. The in-vitro bioactivities of the calcined powders at 1000 &1100 °C were investigated by analyzing their abilities to form apatite on their surface after 21 days in SBF. The apatite mineralization of the powder surfaces was examined through FESEM, EDX, and Raman spectra. The results show that a single-phase wollastonite got formed at all calcined temperatures with a unique silkworm texture. SBF in-vitro test states the formation of HA on the powder surface. Therefore, these powders are expected to be valuable and promising for biomedical applications such as coating and bio cement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.