Abstract

The bacterial endotoxin lipopolysaccharide (LPS) represents a prime pathogenic factor of peri-implantitis because of its ability to adhere tenaciously to dental titanium implants. Despite this, the current therapeutic approach to this disease remains based mainly on bacterial decontamination, paying little attention to the neutralization of bioactive bacterial products. The purpose of the present study was to evaluate whether irradiation with low-energy neodymium-doped:yttrium, aluminum, and garnet (Nd:YAG) laser, in addition to the effects on bacterial implant decontamination, was capable of attenuating the LPS-induced inflammatory response. RAW 264.7 macrophages or human umbilical vein endothelial cells were cultured on titanium disks coated with Porphyromonas gingivalis LPS, subjected or not to irradiation with the Nd:YAG laser, and examined for the production of inflammatory cytokines and the expression of morphologic and molecular markers of cell activation. Laser irradiation of LPS-coated titanium disks significantly reduced LPS-induced nitric oxide production and cell activation by the macrophages and strongly attenuated intercellular adhesion molecule-1 and vascular cell adhesion molecule expression, as well as interleukin-8 production by the endothelial cells. By blunting the LPS-induced inflammatory response, Nd:YAG laser irradiation may be viewed as a promising tool for the therapeutic management of peri-implantitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call