Abstract

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the major components of long-chain per- and polyfluorinated alkyl substances (PFAS), known for their chemical stability and environmental persistence. Even if PFOA and PFOS have been phased out or are limited in use, they still represent a concern for human and environmental health. Several studies have been performed to highlight the toxicological behavior of these chemicals and their mode of action (MoA). Data suggested the causal association between PFOA or PFOS exposure and carcinogenicity in humans, but the outcomes of epidemiological studies showed some inconsistency. Moreover, the hypothesized MoA based on animal studies is considered not relevant for human cancer. In order to improve the knowledge on PFAS toxicology and contribute to the weight of evidence for the regulatory classification of PFAS, we used the BALB/c 3T3 cell transformation assay (CTA), an in vitro model under consideration to be included in an integrated approach to testing and assessment for non-genotoxic carcinogens (NGTxCs). PFOS and PFOA were tested at several concentrations by using a validated experimental protocol. Our results demonstrated that PFOA is not able to induce cell transformation, whereas PFOS exposure led to a concentration-related increase of type-III foci. Malignant foci formation is triggered at PFOS concentrations equal to or higher than 50 ppm. It is not directly associated with cytotoxicity or proliferation induction. The divergent CTA outcomes suggest that different molecular events could be responsible for the toxicological profiles of PFOS and PFOA, which were not completely captured in our study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call