Abstract

Context: Algae have gained importance in cosmeceutical product development due to their beneficial effects on skin health and therapeutical value with bioactive compounds. Spirulina platensis Parachas (Phormidiaceae) is renowned as a potential source of high-value chemicals and recently used in skincare products.Objective: This study develops and evaluates skin creams incorporated with bioactive S. platensis extract.Materials and methods: Spirulina platensis was cultivated, the aqueous crude extract was prepared and in vitro cytotoxicity of S. platensis extract in the range of 0.001–1% concentrations for 1, 3 and 7 d on HS2 keratinocyte cells was determined. Crude extracts were incorporated in skin cream formulation at 0.01% (w/w) concentration and in vitro wound healing and genotoxicity studies were performed. Immunohistochemical staining was performed to determine the collagen activity.Results: 0.1% S. platensis extract exhibited higher proliferation activity compared with the control group with 198% of cell viability after 3 d. Skin cream including 1.125% S. platensis crude extract showed enhanced wound healing effect on HS2 keratinocyte cell line and the highest HS2 cell viability % was obtained with this concentration. The micronucleus (MN) assay results indicated that S. platensis extract incorporated creams had no genotoxic effect on human peripheral blood cells. Immunohistochemical analysis showed that collagen 1 immunoreactivity was improved by increased extract concentration and it was strongly positive in cells treated with 1.125% extract incorporated skin cream.Conclusions: The cell viability, wound healing activity and genotoxicity results showed that S. platensis incorporated skin cream could be of potential value in cosmeceutical and biomedical applications.

Highlights

  • The skin is the body’s first line of defence against infectious organisms and physical damage

  • This study develops natural skin creams incorporated with bioactive S. platensis extract and evaluate the in vitro cytotoxic, genotoxic effects for the safety of consumer products and wound healing activity

  • Skin cream incorporated with 1.125% S. platensis extract exhibited the highest proliferative effect on skin cells

Read more

Summary

Introduction

The skin is the body’s first line of defence against infectious organisms and physical damage. It plays a critical role in controlling body temperature and its aging process affects the whole body. UVR leads to direct or indirect DNA damage and activates cell surface receptors of keratinocytes and fibroblasts in the skin, which causes breakdown of collagen in the extracellular matrix (ECM) and inhibition of new collagen synthesis. This oxidation results in a depletion of endogenous antioxidants. There are two mechanisms in free radical natural skin defence: enzymatic defence (glutathione peroxidase and superoxide dismutase) and non-enzymatic defence (vitamin C, tocopherols and other food-derived antioxidants) (Helfrich et al 2008; Pandel et al 2013)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call