Abstract

Reconstruction of the bladder by means of both natural and synthetic materials remains a challenge due to severe adverse effects such as mechanical failure. Here we investigate the application of spider major ampullate gland-derived dragline silk from the Nephila edulis spider, a natural biomaterial with outstanding mechanical properties and a slow degradation rate, as a potential scaffold for bladder reconstruction by studying the cellular response of primary bladder cells to this biomaterial. We demonstrate that spider silk without any additional biological coating supports adhesion and growth of primary human urothelial cells (HUCs), which are multipotent bladder cells able to differentiate into the various epithelial layers of the bladder. HUCs cultured on spider silk did not show significant changes in the expression of various epithelial-to-mesenchymal transition and fibrosis associated genes, and demonstrated only slight reduction in the expression of adhesion and cellular differentiation genes. Furthermore, flow cytometric analysis showed that most of the silk-exposed HUCs maintain an undifferentiated immunophenotype. These results demonstrate that spider silk from the Nephila edulis spider supports adhesion, survival and growth of HUCs without significantly altering their cellular properties making this type of material a suitable candidate for being tested in pre-clinical models for bladder reconstruction.

Highlights

  • Various diseases of the genitourinary system, such as bladder exstrophy and neurogenic bladder, can cause damage to the bladder and often require reconstructive surgery to prevent urinary retention, incontinence or renal damage

  • Our study revealed that human urothelial cells (HUCs) grown on spider silk show a slightly decreased expansion as compared to HUCs grown on tissue culture polystyrene, which is in accordance with studies demonstrating lower growth rates of fibroblasts when cultured on spider silk matrices as compared to cover slips [27]

  • We have shown that native spider major ampullate gland-derived (MA) dragline silk from Nephila edulis supports the adhesion, survival and growth of HUCs, while maintaining their undifferentiated state

Read more

Summary

Introduction

Various diseases of the genitourinary system, such as bladder exstrophy and neurogenic bladder, can cause damage to the bladder and often require reconstructive surgery to prevent urinary retention, incontinence or renal damage. To avoid the use of intestine in the urinary tract and prevent associated complications, researchers developed a number of strategies to reconstruct the bladder using both natural (e.g. collagen), synthetic (e.g. polyglycolic acid (PGA)) or a combination of both materials (e.g. decellularized submucosa such as small intestine submucosa (SIS) or composite collagen-PGA) as a scaffold. These materials are subject to structural, mechanical, functional and biocompatibility failure [5,6,7,8,9,10,11,12]. Degumming of the silk to remove the sericin coating makes the silk very susceptible to tensile deformation [15,19,20,21]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.