Abstract

The research aims for finding the possibility of buccal delivery of celecoxib from an in situ mucoadhesive nanogel, and in vitro evaluation of the gel to evidence the enhanced permeation of drug from buccal mucosa. Six formulations of celecoxib loaded NLCs were prepared using stearic acid and oleic acid in different ratio in aqueous solution of poloxamer by emulsion solvent evaporation technique. The physicochemical evaluations of the celecoxib loaded NLC (CeL-NLC) were carried out. The formulation F4 was selected as the best and subjected for FTIR, DSC, PXRD, and surface morphology study. In situ mucoadhesive gel was prepared with F4 in HPC, HPMC and Carbopol 934 gelling systems. The gels were evaluated for their mechanical and rheological properties and in vitro permeation studies through rabbit oral mucosa. The selected process at high shear homogenization could yield nanoparticles of desired physiochemical properties. The drug and excipients were compatible as disseminated from FTIR study. Transformation of the crystal form to amorphous form of celecoxib was revealed by the solid-state characterization studies. The AFM study unfold the formation of discrete asymmetric nano particles. All mucoadhesive gels found to have good mucoadhesion and rheological property with good in vitro permeation of drug. A comparative study and statistical analysis unveiled that gel containing Carbopol 934 was found to be the best mucoadhesive in situ gel of nano particles of celecoxib with enhanced permeation parameters. Therefore, the above in vitro evaluation of in situ mucoadhesive nano gel proved the potential of the formulation as a promising buccal delivery of celecoxib.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call