Abstract

Hydroxyapatite (HA) coatings are usually deposited on the metallic implant to increase the biocompatibility and protect the bloodstream from harmful metal ions. Atmospheric plasma spray (APS) is known as a cost effective deposition method. However, the low crystallinity of APS deposited coating accelerates its dissolution in body fluid. We used micro-plasma spray (MPS) to develop chemically stable HA coatings, and performed APS as reference. Results showed that MPS deposited coatings exhibited (002) crystallographic texture while the reference sample did not. The texture intensity and crystallinity were improved by shortening stand-off distance. These suggested that different formation procedures of HA coatings were involved and three mechanisms were proposed by sketching typical splats. To evaluate the chemical stability of the coatings in a physiological environment, in vitro experiments were performed in Hanks' solution. Well crystallized (~100%) HA coating with the strongest crystallographic texture exhibited superior stability up to 14days. Crystals with (002) orientation was more stable than that with (211) orientation. Hence columnar structure with nanopores emerged on the coating surface after incubation, and this may facilitate the future osteoblast growth. Furthermore, HA coating with weak and no crystallographic texture induced apatite layer. However, vertical cracks and cleavage at coating-apatite interface may cause coating separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.