Abstract

Current long duration treatment options and the emergence of drug resistance in tuberculosis (TB) have led to renewed interest in discovery of novel anti-tubercular agents or the scaffolds exhibiting enhanced efficacy with current anti-TB drugs. Herein, dinactin, a potent bioactive macrotetrolide isolated from Streptomyces puniceus AS13, was evaluated against Mycobacterium tuberculosis H37Rv and other susceptible and drug-resistant clinical isolates of M. tuberculosis. In vitro pharmacological assays showed that dinactin is bactericidal against laboratory standard strain M. tuberculosis H37Rv (minimum inhibitory concentration [MIC] 1 µg/mL and minimum bactericidal concentration [MBC] 4 µg/mL). Dinactin also retained its activity against various clinical isolates, including multidrug-resistant strains of M. tuberculosis. Whole cell interaction assays with standard first- and second-line anti-TB drugs showed the synergistic interaction of dinactin with rifampicin or amikacin, reflecting its suitability for use in combination regimens. The killing kinetics studies of dinactin against M. tuberculosis H37Rv revealed that it has strong concentration-dependent anti-TB activity that is also dependent on time. The kill curve also showed dynamic killing capacity of dinactin as it exhibited bactericidal potential at all concentrations tested. Kill curve data demonstrated that dinactin, like isoniazid, exerts its strong tuberculocidal activity within the first two days of exposure. This evidence strongly supports further evaluation of dinactin as a new option in the treatment of TB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call