Abstract

Surface chemical compositions, such as calcium/phosphorus ratio and phase content, have a strong influence on the bioactivity and biocompatibility of calcium phosphate (CaP) coatings as applied on orthopedic and dental implants. Hydroxylapatite (HA) and dicalcium pyrophosphate (DCPP) coatings were prepared on titanium substrates by RF magnetron sputter deposition. The surfaces were left as-prepared (amorphous HA coating; A-HA, amorphous DCPP coating; A-DCPP) or heat treated with: infrared (IR) at 550 degrees C (I-HA) or at 650 degrees C (I-DCPP), and a water steam at 140 degrees C (S-HA and S-DCPP). The surface changes of these coatings were determined after incubation in simulated body fluid (SBF). Also, the growth of rat bone marrow cells (RBM) was studied with scanning electron microscopy (SEM). Both IR and water steam heat treatment changed the sputter-deposited coatings from the amorphous into the crystalline phase. As-prepared amorphous coatings dissolved partially in SBF within 4 weeks of incubation, while heat-treated coatings supported the deposition of a precipitate, i.e., carbonated apatite on both I-HA and S-HA specimens, and tricalciumphosphate on the I-DCPP and S-DCPP specimens. The Ca/P ratio of the A-HA, I-HA, S-HA, A-DCPP, I-DCPP and S-DCPP coatings changed, respectively, from 1.98 to 1.12, 2.01 to 1.76, 1.91 to 1.68, 0.76 to 1.23, 0.76 to 1.26 and 1.62 to 1.55 after 4 weeks of incubation in SBF. Finally, the RBM cells grew well on all heat-treated coatings, but showed different mineralization morphology during cell culturing. The different heat-treatment procedures for the sputtered HA and DCPP coatings influenced the surface characteristics of these coatings, whereby a combination of crystallinity and specific phase composition (Ca/P ratio) strongly affected their in vitro bioactivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.